Table of Contents
Utangulizi
Kazi hii inawasilisha matokeo ya msingi ya kutowezekana kwa ajili ya kujenga minyororo ya vitalu salama kulingana na Uthibitisho wa Nafasi (PoSpace) pekee chini ya hali ya upatikanaji wa nguvu. Inapima hatari hiyo rasmi, ikionyesha kuwa adui anaweza kila wakati kuunda tawi linaloshinda la urefu uliowekwa kikomo, na kuhitaji dhana za ziada za kisiri kama vile Vilele vya Ucheleweshaji Vinavyothibitishwa (VDFs) kwa usalama.
2. Background & Problem Statement
2.1. Nakamoto Consensus & Proof-of-Work
Usalama wa Bitcoin unategemea Uthibitisho-wa-Kazi (PoW) na kanuni ya mnyororo mrefu zaidi. Inahakikisha usalama ikiwa wahalisi wanadhibiti idadi kubwa ya nguvu ya hashing, hata chini ya nguvu jumla inayobadilika ("kutofautisha kwa rasilimali").
2.2. Proof-of-Space as a Sustainable Alternative
PoSpace imependekezwa kama mbadala wa PoW wenye ufanisi wa nishati, ambapo wachimbaji wanatenga nafasi ya uhifadhi badala ya hesabu. Hata hivyo, usalama wake katika mazingira ya nguvu, yasiyo na ruhusa ulikuwa tatizo lililofunguliwa.
2.3. Changamoto ya Usalama: Upatikaji Wenye Mabadiliko
Changamoto kuu ni "upataji wenye mabadiliko": nafasi ya wakweli inaweza kutofautiana (sababu ya $1 \pm \varepsilon$ kwa kila block), na adui wanaweza "kupanga upya" nafasi yao (kuitumia tena kwa changamoto nyingi) kwa gharama ya muda sawa na $\rho$ blocks.
3. Formal Security Model & Impossibility Result
3.1. Game Definition & Adversarial Capabilities
The security game assumes honest parties control $\phi > 1$ times more nafasi than the adversary at any point. The adversary can:
- Badilisha nafasi ya uaminifu kwa kipengele cha $1 \pm \varepsilon$ kwa kila kizuizi.
- Panga upya nafasi kwa gharama ya muda ya kizuizi $\rho$.
3.2. The Lower Bound Theorem
Theorem (Lower Bound): For any kanuni ya uteuzi wa mnyororo, katika mchezo huu, adui anaweza kuunda uma ya urefu $L$ ambayo itakubaliwa, ambapo:
$L \leq \phi^2 \cdot \rho / \varepsilon$
Hii ni matokeo ya kutowezekana: usalama hauwezi kuhakikishwa dhidi ya uma fupi kuliko kikomo hiki.
3.3. The (Strange) Upper Bound & Matching Rule
Theorem (Upper Bound): Kuna kuna kanuni ya uteuzi wa mnyororo (isiyo ya kawaida kabisa) inayomlazimu adui kuunda uma ya urefu usiopungua:
$L \geq \phi \cdot \rho / \varepsilon$
Hii inaonyesha mpaka wa chini umekazwa hadi kiwango cha $\phi$.
4. Technical Details & Mathematical Formulation
The impossibility stems from the adversary's ability to leverage the time dhidi ya nafasi kutofautiana. Wakati nafasi ya waaminifu imefungwa kwa muda wa changamoto, adui, kwa kukusanya kiasi maalum cha nafasi na kupanga upya, anaweza kuiga nafasi zaidi "za kuwazi" baada ya muda. Ukosefu wa usawa muhimu unaosababisha kikomo unahusiana na rasilimali ya nafasi-muda ya ufanisi ya adui $A_{eff}$, rasilimali ya nafasi-muda ya waaminifu $H_{eff}$, na urefu wa uma $L$:
$A_{eff} \approx \frac{L}{\rho} \cdot A \quad \text{and} \quad H_{eff} \approx \phi \cdot A \cdot \frac{L}{\varepsilon^{-1}}$
Manipulating these under the game constraints leads to the final bound $L \approx \phi^2 \rho / \varepsilon$.
5. Results & Implications
5.1. Kikomo cha Msingi cha Usalama
Muhtasari wa Vigezo vya Usalama
Kikomo cha Urefu wa Uma la Upinzani: $L \leq \phi^2 \cdot \rho / \varepsilon$
Key Parameters:
- $\phi$: Honest nafasi advantage (>1).
- $\rho$: Muda wa kupanga upya (katika vitalu).
- $\varepsilon$: Mabadiliko makubwa ya nafasi ya uaminifu kwa kila kizuizi.
5.2. Uhitaji wa Vipengele vya Ziada (mfano, VDFs)
Matokeo yanathibitisha kuwa PoSpace pekee haitoshi. Itifaki kama vile Chia Kwa usahihi kuingiza Vitendo vya Kuchelewesha Vinavyothibitishwa (VDFs) ili kuongeza mchepuko wa wakati wa lazima, usioweza kufanyika sambamba kati ya vitalu, na hivyo kupunguza njia ya shambulio ya upangaji upya. Hii inathibitisha chaguo la usanifu la Chia kutoka kwa mtazamo wa kinadharia.
5.3. Uchunguzi wa Kesi: Mtandao wa Chia
Chia hutumia PoSpace + VDFs ("Uthibitisho wa Wakati"). VDF inahakikisha kiwango cha chini cha wakati wa ukuta-saa kati ya vitalu, na kufanya kigezo cha $\rho$ kiwe kikubwa sana kwa hasimu anayejaribu kuunda mnyororo mbadala, na hivyo kuinua kikomo cha urefu wa uma cha vitendo hadi viwango visivyowezekana.
6. Analysis Framework & Example Case
Mfumo wa Kutathmini Itifaki za Mnyororo Mrefu za PoX:
- Utambulishaji wa Rasilimali: Fafanua rasilimali adimu (Nafasi, Muda, Hesabu).
- Mfano wa Kimuundo: Model honest resource fluctuation ($\varepsilon$) and adversarial resource manipulation (e.g., replotting cost $\rho$).
- Attack Vector Analysis: Identify how an adversary can translate one resource into another (space into time via replotting).
- Bound Derivation: Tenga usawa kati ya bidhaa ya rasilimali-na-muda ya adui na ya mwaminifu kwa urefu maalum wa uma $L$.
- Uchambuzi wa Pengo la Msingi: Amua ikiwa kikomo hicho kina usalama wa vitendo. Ikiwa hapana, tambua vifaa vya msingi vya ziada vinavyohitajika (VDF, PoW, stake).
Mfano wa Utumizi: Tathmini mnyororo wa kubuni "Uthibitisho-wa-Hifadhi". Weka kigezo cha kasi ya upangaji upya wa hifadhi ($\rho$) na mienendo ya hisa ($\varepsilon$). Mfumo huo ungeonyesha haraka uwezekano wa kushambuliwa kwa njia sawa ya "upangaji-upya" isipokuwa kizuizi cha muda (VDF) au utaratibu wa kukatwa ungeongezwa.
7. Future Applications & Research Directions
- Hybrid Consensus Models: Kubuni makini ya PoSpace+PoS au PoSpace+PoW ili kufikia usalama bila mzigo mwingi.
- Enhanced VDF Designs: Utafiti wa miundo ya VDF yenye ufanisi zaidi au iliyotawanywa ili kupunguza mzigo wa kuongeza dhamana za wakati.
- Uthibitishaji Rasmi: Kutumia muundo huu kwa mifumo mingine ya "uthibitisho-wa-X" (Proof-of-Useful-Work, Proof-of-Physical-Work) ili kuzuia mapema kasoro za usalama.
- Mambo ya Kuzingatia Baada ya Quantum: Kuchunguza miundo inayotegemea PoSpace ambayo inabaki salama katika enzi ya baada ya kompyuta za quantum, ambapo VDFs zinazotegemea mraba wa mfululizo zinaweza kuwa na hatari.
8. References
- Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
- Dziembowski, S., Faust, S., Kolmogorov, V., & Pietrzak, K. (2015). Proofs of Space. CRYPTO 2015.
- Cohen, B., & Pietrzak, K. (2018). The Chia Network Blockchain. https://www.chia.net/assets/ChiaGreenPaper.pdf
- Boneh, D., Bonneau, J., Bünz, B., & Fisch, B. (2018). Verifiable Delay Functions. CRYPTO 2018.
- Garay, J., Kiayias, A., & Leonardos, N. (2015). The Bitcoin Backbone Protocol: Analysis and Applications. EUROCRYPT 2015.
- Pass, R., & Shi, E. (2017). FruitChains: A Fair Blockchain. PODC 2017.
9. Expert Analysis & Critical Commentary
Uelewa wa Msingi
Karatasi hii inatoa mshambulio mzuri na wenye ufanisi kwa ndoto ya kijinga ya "Bitcoin ya kijani" iliyojengwa peke yake kwenye Uthibitisho-wa-Nafasi. Sio tu mshambulio kwa itifaki maalum; ni hoja ya kimsingi ya thermodynamics kuhusu uhusiano kati ya nafasi, wakati, na usalama katika makubaliano yasiyokuwa ya kati. Uelewa wa msingi ni kwamba nafasi, tofauti na kompyuta katika PoW, kwa asili haijachomwa. Adui anaweza kuitumia tena. Uwezo huu wa kutumia tena, chini ya ushiriki wenye mabadiliko, huunda kitanzi cha hatari cha uhakiki ambacho sheria yoyote ya mnyororo mrefu haiwezi kukinga. Inaelezea rasmi kwa nini miradi kama Chia ilikuwa Ilibidi waweke kwenye utendakazi wa kuchelewesha unaoweza kuthibitishwa (VDF)—haikuwa bora ya hiari bali ni hitaji la kinadharia.
Mtiririko wa Kimantiki
Mantiki ya waandishi haina dosari na inafuata muundo wa kawaida wa uthibitisho usiowezekana: 1) Fafanua muundo halisi wa adui ($\phi$, $\varepsilon$, $\rho$) unaoshika vikwazo vya ulimwengu halisi vya uhifadhi (wakati wa upangaji upya) na mabadiliko ya mtandao. 2) Onyesha kuwa ndani ya muundo huu, kwa any kwa sheria yoyote inayoweza kufikirika ya kuchagua mnyororo, adui mwenye nafasi ndogo anaweza daima kuwapita nodi zaaminifu kwenye tawi refu ya kutosha, lakini lenye mipaka. 3) Kikomo $L \leq \phi^2 \rho / \varepsilon$ ndio ushahidi wa moja kwa moja. Kinapima kutokuwa na usalama. Ufuatiliaji unaoonyesha kikomo cha juu kinachokaribiana na sheria "ya kushangaza" ndio msumari wa mwisho, ukithibitisha kuwa kikomo hicho ni kikali na udhaifu huo ni wa asili kwenye rasilimali, sio muundo wa sheria.
Strengths & Flaws
Nguvu: Vigezo vya mfano ($\rho$ kwa upangaji upya, $\varepsilon$ kwa mabadiliko) vimechaguliwa kwa ufasaha, vikikamata fizikia muhimu ya tatizo. Matokeo yake ni safi, ya jumla, na yanayoweza kutekelezwa mara moja. Yanainua mjadala kutoka "je, itifaki hii ni salama?" hadi "ni dhana ya ziada ya chini ipi inayohitajika kwa usalama?".
Kasoro/Vikomo: Mfano unadhania wengi waaminifu wasiojitolea ambao hawabadilishi mkakao wao kulingana na matawi yaliyogunduliwa—dhana ya kawaida lakini wakati mwingine yenye kikomo katika uchambuzi wa mnyororo mrefu. Muhimu zaidi, ingawa unathibitisha uhitaji wa kitu cha msingi cha kuongeza kama VDF, haupimi kiasi cha ya kutosha vigezo vya VDF hiyo (chelewesho la kiasi gani lina kutosha?). Hii inaacha pengo kati ya nadharia na utendaji. Zaidi ya hayo, kanuni ya "ajabu" ya uteuzi wa mnyororo ambayo inakaribia kufanana na kikomo ni kitu cha kuvutia cha kriptografia lakini haina matumizi ya vitendo, ikionyesha kina cha tatizo hilo.
Ufahamu Unaoweza Kutekelezwa
Kwa wabuni wa itifaki: Acha kujaribu kuunda itifaki safi za PoSpace za mnyororo mrefu zaidi. Karatasi hii ni arifa yako rasmi ya kusitisha na kuepuka. Njia inayowezekana mbele ni kupitia mchanganyiko pekee.
- Ucheleweshaji wa Muda Unaolazimishwa (Njia ya VDF): Fuata mwongozo wa Chia. Unganisha VDF ili kufanya $\rho$ iwe ya kiwango cha astronomia kwa mshambuliaji, na kusukuma mpaka wa urefu wa wavu kuwa zaidi ya uwezekano. Lengo la utafiti linapaswa kuwa kufanya VDF kuwa bora zaidi na isiyo na kitovu.
- Chunguza Mfumo wa Mnyororo Sio Mrefu Zaidi: Fikiria familia mbadala za makubaliano kama Uthibitisho wa Hisa (PoS) na vifaa vya mwisho (k.m., Casper FFG) au itifaki za BFT zinazotegemea kamati. Hizi zinaweza kuunganisha PoSpace kwa njia tofauti, na kuepuka kabisa njia hii ya shambulio. Kazi ya Ethereum Foundation ya kuunganisha VDF na PoS kwa ajili ya utofauti (RANDAO+VDF) inaonyesha utumiaji mpana wa misingi hii.
- Uadilifu wa Vigezo: Ukijenga mchanganyiko, tumia mfumo wa karatasi hii. Elezea kwa uwazi ubadilishaji wa nafasi na wakati wa adui yako, fafanua $\varepsilon$ ya mtandao wako, na utumie kikomo kilichopatikana kujaribu muundo wako kwa nguvu. Hii sio ya kitaaluma tu; ni mpango wako wa usalama.
Kwa kumalizia, Baig na Pietrzak hawajatatua tu tatizo wazi; wamechora mstari mkali nyekundu katika mchanga wa nadharia ya makubaliano. Wamehamisha uwanja kutoka kwa uhandisi wenye matumaini hadi fizikia madhubuti, wakifafanua kile kisichowezekana na hivyo kuangazia kwa uwazi njia nyemba ya kile kinachoweza kuwa kikweli. Hii ni kazi ya msingi ambayo itaokoa miradi mingi ya baadaye kutoka kwa usanifu usio na mwisho.